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ABSTRACT

The problem of valuation for contingent claims that can be exercised at0

any time before maturity, such as American options, is discussed in the manner

of Bensoussan [1ll. We offer an approach which both simplifies and extends the

results of the existing theory on this topic. . 4
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1. Introduction

/ /

In an important and relatively recent article 11], A. Bensoussan presents

a rigorous treatment of the pricing problem for contingent claims that can be

exercised at any time before maturity. He adapts to this situation the Black

& Scholes [3] methodology of duplicating the cash flow from such a claim by

managing skillfully a self-financing portfolio that contains only the basic in-

struments of the market, i.e., the stocks and the bond, and that entails no ar-

bitrage opportunities before exercise. Under a condition on the market model

called completeness (due to Harrison & Pliska [7],[8] in its full generality

and rendered more transparent in [1]), Bensoussan shows that the valuation of

such claims is indeed possible and characterizes the exercise time in terms of

,* an appropriate optimal stopping problem.

In the study of the latter, Bensoussan employs the so-called "penaliza-

tion method," which forces rather stringent boundedness and regularity condi-

tions on the payoff from the contingent claim. Such conditions are not satis-

flied, however, by the prototypical examples of such claims, i.e., American

call options.

The aim of the-pres ent paper is to offer an alternative methodology on

this problem, which is actually simpler and manages to remove the above re-

strictions. Furthermore, it seems to be well-suited to the handling of claims

that are perpetual, i.e., exercisable at any time before the end of the age.

We present a suitably modified version of the Bensoussan model in sec-

tions 2 and 3. The analysis is carried out in section 4, culminating with the

valuation formulae (4.8), (4.9). Some elementary consequences of those formu-

lae are discussed. We take up the "perpetual" case in section 5.

. .. . .. . . . . . .. ..... . . ..............
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2. The market model

Let us consider a market in which n+ 1 assets (or "securities") are

traded continuously. One of them, called the bond, has a price X( 0 ) which

evolves according to the equation

(2.1) dX(0 ) . r X O)dt; X 1O) 1
t t t

with interest rate process {r ; 05 t< -}, and determines the discount factor
t

(2.2) exp{-fr ds}; 05t <=.t x- - 0 s

The remaining n assets, called the stocks, are risky; their prices are modelled

by the linear stochastic differential equations

4, d

dX(.)  [y(t)- j(t)IX dt + X Y 7a. (t)dW O~t , ,  5ntt . ij '
(2.3)i

X~i) =x.>
XM X.> 0

with random appreciation rates {a.(t); 0 t <-1 and dividend rates {)J(t);Of t<"}
M i

(payable to stockholders). The discounted prices aX of the stocks obey the

equations
d

(2.4) d(tXi)) = atxt I{a (t) -rt-u(t)}dt + a tWdW 05t< , l:i5n.
t t / t ii j

Here, the process W = {Wt  "W(I ) ..., w(d))*, FW; O t< c} is a standard, d-
t t t

dimensional Brownian motion on the space (Q,FP). We shall denote by F tI

the augmentation under P of the filtration

(2.5) Fw - a(W ; 0O<s t), 0_<t<
t -S

generated by the Brownian motion; it is well-known (e.g. [10], section 2.7)

that {F } satisfies the usual conditions of right-continuity and completeness
t

by the P-null events in F. One can think of the integer d as representing
Eqo

. !

,4 W * * 4E -. * , - *.. .. ', . . , ' ' ,- -.. : ''' ,.•. ''''' . .•.. , ,
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the number of independent, exogeneous sources of uncertainty in the market

model. We shall assume that

the processes {rt; Ost<-}, {a (t); Ot< }, {ia (t); O<t< }
ti ii

(2.6) and Wi(t); Ost<'<- are progressively measurable with respect toi

{FW} and uniformly bounded in absolute value by a constant C> 0.
t

Let us consider now the random matrices

a(t) - {Oij(t)} , D(t) - c(t)O*(t), H(t) - a*(t)a(t)
ij lSiSn' -

lgJ~d

and the random vector a(t) - rtl with components ai(t) - rt; 1 5 in, 05 t .

2.1 Definition: We shall say that the market model (2.1), (2.3) is complete

if there exist positive numbers c,6 such that

n d 2 n
(2.7) Dik(t,w) . ., for all c

i-l k-l

d d 2 d
(2.8) 1 1 H i(tw) j Z> 611R 2  for all e F]dj=l Z1 j '

hold for every (t,w) E 0,-) x.

Condition (2.7) will be needed below in the construction of the auxiliary

probability measure P, and condition (2.8) in the construction of a "hedging

portfolio" (section 4). In particular, (2.7) and (2.8) imply n-d, i.e., that

there exist exactly as many stocks as independent sources of uncertainty in

the model. Under completeness, the matrix D(t,w) is invertible for every pair ,

d_
(t,w) and the ]R-valued process

(2.9) 0(t) a 0*(t)D- (t)[a(t) -rt1] FW ; 0! t <

has components which are progressively measurable, uniformly bounded by a P

constant C> 0, and satisfy

d
(2.10) a (t)e.(t) = a0(t)-rt; O5t< , 5i n

J. j t

i. . 1.
j - [ " "}! " " ""]% % % % % % % %l""". . .m "
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everywhere. But then

d t
(2.11) Zt = exp{- lejsdW j ) - '/ 2 f116(s) I 2 ds}, F 0! t<

j=l 0 ~ t

is a martingale under P, and the Girsanov theorem guarantees the existence

of a new probability measure P on (Sl,FW ) which satifies

(2.12) P(F) = E[Z 1 ] for all FE FW
T F T

for every 05 T < -; under this measure, the process

t W
(2.13) Bt  w t + fe(s)ds, Fw " 0t< CO

0~ d

is a standard Brownian motion in lRd (see [9), pp. 176-180 or [10], section 3.5).

Furthermore, for every fixed,finite T> 0, the probability measure

(2.14) PT(F) = E[ZT 1 F]; FE FT

agrees with P on FT, is mutually absolutely continuous with respect to P on

F T  and
I''

(2.15) (B ,F ; 05t<T} is Brownian motion under PT"
-t t V

Under this measure, (2.3) and (2.4) can be written , respectively, as

(2.16) dX~ i  = (r t - i (t)i)x i dt +t(ij~i oij(t)dBJ) 0< t<T

d

(2.17) d(BtX = atXt [ .. (t)dB - (t)dt]; 0<t<T.
Stt j=lJ t i.

2.2 Remark: It is seen from (2.17) that the discounted price process
(i)

{tXt  ,F; <t 1T}, for a stock which pays no dividends, is a martingalet t

under the measure P In fact, P was constructed with an eye towards this
T*

property; see Harrison & Pliska [71,[81 for an amplification of this point.

The existence of a probability measure under which the discounted prices be-

come martingales plays a central role in the theory of continuous trading

.. . . .. .. .-

• ... .:, -. .. :..-, ,: .: .. .. :. .. . .. . .- .. .. . .. _. . . .- . ..v . . .:., :. ., : . - '- ; '; . . . .... . . . ~ . .. : ' , . , . , , . ,, . , , -, ,
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developed by these authors.

More generally, if the dividend rate process Vi is nonnegative, then the

.(i) .idiscounted price process $X is a supermartingale under P

Let us denote now by {t the augmentation of the filtration {F W under
t t

P, and define

(2.18) M n M; 0<t< .
t t+ EO0 t+ -

This new filtration satisfies obviously the usual conditions for P, and it is

rot hard to see that

(2.19) B t; O tt } is a standard Brownian motion under P.

Indeed, we only have to verify that, for every f C OR), the process

Indeedds;we<t < "0 ] ,th rcs

00Mt = f (B) f f(B0 f -2 f (0 s;
t 0 2 0

is an {) }-martingale under P. We know from (2.13) that it is an {FW}-
t t

martingale; thus, with 0< s< s+-< t< -, there exists for every given
n

FE an event GE F such that P(GAF)= 0, andi I
s+- s-'-

n n

(2.20) s[(Mf - M+ if )I [(M - M ' 0

n n
By taking FE Ms+ = F and then letting n- - in (2.20), we obtains+ 5

E[(Mt - M )f] 0 , and therefore (2.19) as well.
t s F

2.3 Remark: All the processes under consideration are adapted to fF 1, and
t

the equations (2.16), (2.17) are valid for 0!t< on (2, F P).
cc.

,
.. : ,-..'.,'... . '*.; ...- ... . - .-. . ,-..,- . . . . . , . .. . . .. . . . .. . . - . .. . .. . .. . .. .

A," . ,,. . .. -.,".", .- ." .5 2.' ... ". - " "
•



3. Contingent claims and equivalent portfolios

In order to fix ideas, let us take d=n = 1 in the market model of the

previous section, and suppose that at time t = 0 we sign a contract which

gives us the option to buy, at any time T between t = 0 and an "expiration

date" t=T, one share of the stock at a specified price of c dollars (the

contractual "exercise price"). If the price X of the stock is below theT

x(1)
exercise price at t=T, the contract is worthless to us; but if XT >c, we

can exercise our option (i.e., to buy one share at the preassigned price c)

and then sell the share immediately in the market, thus making a net profit

(I) +
of (XT - c) dollars. Because clairvoyance has to be excluded, T is restricted

to be a stopping time of {F } with values in [0,T].
t

Such a contract is commonly called an American option, in contradistinc-

tion to "European options" which allow exercise only on the expiration date,

i.e., T=T. Both European and American options are financial instruments and

can be traded on their own right (e.g. at the Chicago Board Options Exchange

and other organized secondary markets for options).

Two related questions can be raised for such instruments:

(3.1) (i) When should an American option be exercised, if at all?

(3.1) (ii) How much should one be willing to pay at t = 0 for the right to

sign the abovementioned contract?

We shall see that the key to answering both these questions comes in the

form of an appropriate optimal stopping problem. The following definition I:

generalizes the concept of American option; we denote by S the collection
UV

of all stopping times 7 of {F } with values in [u,v]. for fixed 0 <u <v<x
t

and write S S S

'Ol I ti 2~k, . '-
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3.1 Definition: An American contingent claim (ACC) is a financial instru-

ment specified by

(i) an expiration date TE (0,],

(ii) the selection of an exercise time T S ,T'

(iii) a payoff rate gt per unit time on (0,T), and

(iv) a terminal payoff f- at the exercise time.

The processes F = i F W  0< t< -} and G = {g ,F ; 0tt< are no-
t t t t

negative, progressively measurable, and satify for some m> 1:

T
(3.2) E[ sup f + fg dt] m < -, for every fixed TE (0,-).

0 <t <T t 0 '

Furthermore, F is assumed to have continuous paths.

3.2 Remark: An ACC with expiration date T= o is referred to as perpetual;

in this case, (iv) above is to be understood with the convention

f 0C(W) A im f t(W) , W OE ir

t-*

3.3 Example: An American option is a special case of an ACC with n= d= 1,

t=0 and f = (X( )- c) . The number c-? 0 is called the exercise price of

the option.

Let us suppose now that at time t = 0 we sign a contract which entities

us to an ACC. What is then the value V of this instrument to us, for
t

every 0 -t T? If we can answer this question, then we can also answer ques-

tion 3.1(ii) above: we should be willing to accept at t= 0 a fee which is

proportional to V0. This is the essence of the contingent claim valuation

problem, which has a long history (see Samuelson [14],[15], McKean [11], Van

Moerbeke [17] and the review article by Smith [16]). We shall approach here

-A-.. .. .-. . . . . . . . . . . .



in the spirit of Merton [12], Harrison & Pliska [7],[8] and particularly

Bensoussan [1]. The fundamental idea, due to Black & Scholes [3] in the

setting of European options, is to try to duplicate the cash flow from an

ACC by skillfully managing a portfolio that contains shares from the basic

instruments of the market, i.e., the stocks and the bond.

3.4 Definition: A vector (t) Tr 7(t),... (t)), F 0< t<,'; of
0 ' n t

• measurable and adapted processes on (2,F) with

(3.3) P 7 (s)ds< - 0 i 0,1 .. .. n
0

is called a portfolio; its components represent the number of shares, from

each of the n+ l assets, that are to be held (if r.(t) 0) or borrowed (if

(t) < 0) at time t. The quantity

nM

(3.4) V = W.(t)X~i)• 0- t<
t 1 t

is called the value of the portfolio at that time.

The question now is to choose the portfolio 7 in such a way as to imi-

tate the cash flow from the ACC; then V in (3.4) will represent not only
t

the value of the portfolio but also that of the contingent claim for 0- t-- T.

For this to happen, we should have necessarily

(3.5) V f ; for all 0< t<Tt t

and, if T ' , also

(3.6) T f

almost surely, because we always have the option of exercising our claim (anU

only this option if t = T < -). On the other hand, we want to build the port-

folio in such a way that the total earnings (i.e., capital gains plus divident

payments)

--. .........................................
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n t+h (j) n t+h (i)

I f 7i(s)dX + X f iT.(S)Xs i(s)ds
i=O t i=l t 1

from it over any interval (t,t+h) should not fall below the potential earnings

t+h
V -V + f gs a
t+h t t s

that would result from the possession of the claim. This is the so-called

hedging property of the portfolio; we impose it by postulating that the process

An t () n t t i

At I f.(s)dX + If7o(s)X ii(s)ds fgds +V
(3.7) i=00' i=l0 i -0

is almost surely nondecreasing.

Finally, let us introduce for every t E [0,T) the random time

(3.8) t = inf{s> t; V =f }t s 5

and observe from (3.5), (3.6) that t ? <T holds almost surely, if T< It

is certainly plausible that, if we can guarantee the stopping time property of

this time will then be the best amongst all TE StT to exercise the claim.

Therefore, on the interval (t,T ) the situation is very much like that for a
t

European claim: the gains from the portfolio and the gains from the claim

should coincide, so that no arbitrage opportunities could exist. Equivalently,

the process A of (3.7) should be constant on this interval:

(3.9) A = A^ , almost surely.
t 7

t

We shall see in the next section that it is possible to construct a portfolio

with all these properties. The following technical notion and result will be

needed.

3.5 Definition: A measurable, adapted process {Y F; 0IF t <cx} is said to
t

be of

(i) class D, if the family {Y ;TE S 0 is uniformly integrable;

S. .

• . -" . ,- , " .' '....". ..... . . . . . ..-... .-..... ....-..." . .". .. .. - ,"% . . .' ". . . ",,.% ' ,. •.•,' ' ...

I.. * *
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(ii) class D[O,T], for a given 0<T<-, if the family {Yr;Tc SOT is uni-

formly integrable;

(iii) class DL, if it is of class D[O,T] for every O< T< .

3.6 Lemma: The progressively measurable process

t

(3.10) Q ft + fgsds, FW

0

is of class DL under P.
ACT

Proof: With p = m>1, KT = e (max0<t<T ft+f 0 gsds) we have from (2.12)

and the Holder inequality:

(3.11) E( max Qt) p  E(K p ) = E(KPZT) (EK (Ez
Ot<Tt T TT T T

where I/p + i/q = i. Now (3.2) gives EKT < -, and for any q ,l we can write
T

d T T s
T exp{- ? , qK (s)dW( j ) I 1  _( !_xp _q T,.ZT= - -O olq()l~s'x" 2 Jl(~!d}

;. =-- 0 s -0 0

* whence

%q 2< 2-%. EZ T x q ) <o

From (3.11) we obtain sup EQP < o, and the requisite uniform integrability

follows. O'T

d

,-~........ .,. ,. ... .. .... ...., ..., . .... ..,. ..,.. ... .. .. .. .. .. .. .- -, -:



4. Claims with finite expiration date

We broach now the question of valuating an ACC with T<~ all the pro-

cesses under consideration will be defined only on [0,T].

4.1 Definition: A portfolio nl is called a hedging portfolio against the ACC

if its value V is continuous, of class D[O,T], and satisfies (3.5), (3.6),L

(3.7) and (3.9), under PT

If such a portfolio exists, its value V is called a valuation process

for the ACC, and V 0is referred to as a value of the ACC at t =0 7

Because of the continuity of both V and F, the random time t of (3.8)
t

* is indeed a stopping time of IF ). We shall show in Theorem 4.2 below that
t

*a valuation process exists and is unique up to indistinguishability.

4 CLet us start by assuming the existence of such a process ; recalling

(2.1), (2.16), (3.4) we can rewrite the process A of (3.7) in the equivalent

form
t n d t (i) ()

(4.1) A = V 0- V + ((rV -g)ds + V f7i(s)X i ale a(s)dB s; ostT.
0 rtlj= h A a t

tTt

We fix tr [0 ,eec a stopping time 1esl ad d Tee

t

for ml,2,.... .The equations (2.2), (4.1) give

(4.3) (A6) + we ca (g + r A ofs ( n .d n t e (i) equ va en

~ n Bg~AJs § I±fi(s) s , -

=1 i l l

Wes Bux t [Othe non-ecra sting te of A implie n paricula
T'(

(4.4) 6 A Ti A + r i Ads f 8 dA 0,

t T t S-

m m t t

which gives in conjunction with (4.3):

m":
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m n d m(4.5) tV-s V + f Bsgsds - 2T I Jr.(s)ax(i)o (s)dBsj ), a.s. PT .

tt Tm Tm t sS i=1 j=l

The conditional expectations (given Ft ) of the stochastic integrals are equal

to zero, and thus
T
m

(4.6) 6tt T[T V T + f Bt]gds'F) a.s.
m m t

Now we may let m -- ; because of (3.3) we have limmTm=T, a.s. PT' and by

the monotone convergence theorem, the membership of V in D[O,T], and (3.5),

we deduce
T

(4.7) tV t T[E f + Sqsg dsIFt], a.s. P
t t s

for every LE S t,T . On the other hand, with T= t' all four of (4.4)-(4.7)

hold as identities, and thus

L
t

tVt  [ST fT T S BsgsdsIF t], a.s. PT
t t t

4.2 Theorem: Under the assumptions (2.6)-(2.8) and (3.2), there exists a

continuous, adapted process V = {V, F t; 0<! t <_T which is a valuation process

for the ACC of Definition 3.1 and admits the representation

I T s

(4.8) Vt = esssup fT [f exp{-fr sds}+fgs exp{-fr udu}dsFt , a.s. PT
TES T t t t

tT.

for every fixed tt 10,T]. Every other valuation process is a modification of

(and hence indistinguishable from) V. In particular,

I T S i

(4.9) V0 = sup T [fT exp,-fr ds} + fgsexpt-fr du}ds].
TES0,T 0 0 0

The uniqueness claim has just been shown; for the existence, let us re-

call the process Q of (3.10) and consider the optimal stopping problem of

characterizing the function

. ..- o

,~ ~.....
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i

%A

(4.10) u(t) sup t (Q T).
TESO 0TT

This problem was treated by Fakeev [5] and Bismut & Skalli [2]; accord-

ing to the results of these papers, there exists a right-continuous supermart-

ingale ={& ,F ; 0 < t <} such that
t t

(4.1)u(t) T r(t )

and

(4.L2) t = esssup t (Q IF ), a.s. P

TEStTtT

are valid for every tE [0,T1. The process turns out to be the Snell envelope

of Q (i.e., the minimal right-continuous supermartingale which majorizes Q),

and the stopping time

(4.13) C inf{s > t; s  Qs} E StT

is optimal for every given tE [0,T]:

(4.14) u(t) = T(Q ).
* t

Moreover, it was shown by Bismut & Skalli [21 that the supermartingale is

regular:

for every sequence {a m S_ S converging a.s. to a
n5 n-l tT T

.5(4.15) stpigtm S
stopping time ES ,T' we have lim n-( )T ( = n ().

n

4.3 Lemma: For every tE [0,T], the process { SAD F s; t!<s<T} is a martingale
t

under PT"

Proof: The above process is a supermartingale, by the optional sampling

theorem; it also has constant expectation, since

IT(CDt ) = T (Q ) u(t) = T(F )



14

by virtue of (4.11), (4.14). The martingale property follows.

4.4 Lema: The supermartingale C of (4.12) is of class D[0,T] under V

Proof: We proceed as in the proof of Lemma 3.6; if {m ; O<t-<T} is a right-

continuous modification of the martingale {T(1iFt); 0-t<T} and X qP,

the Doob, H8lder and Jensen inequalities give

<0t!T T 0<tT t T T Ti

The remainder of the proof follows that of Lemma 3.6.

Now Lemma 4.4 and regularity (condition (4.15)) show that admits the

Doob-Meyer decomposition (cf. [13), Chapter VII)

(4.16) E=M-A

where A= {A t,F t; 0 < t<T} is a continuous, nondecreasing process with T(A T) <o,

and M= {M t,F t; 0<-t-<T} is a right-continuous version of the PT-martingale

T (MTjFt); 0-< t<T} with M Q T+A T. The Bayes rule gives

E(MTZTIFt) Nt
t T (MTIF) Z , a.s. P

t t

where {N t ,F t Ot<_T} is a right-continuous version of the P-martingale

{E(M ZT T t); 0-< t-<T}. This version can actually be taken as continuous,

since by the basic representation theorem ([9], p. 80 or [10], section 3.4)

we have
d t

(4.17) Nt  E(MTZ T ) + I j.(s)dW~j ; 0<t-T
j 1so

a.s. P for suitable measurable and adapted processes {#.(t),F t; 0 -t-<T}

such that
T42

(4.18) P[jd(t)dte] - 1; 1 5 j S d.

oJ]

0

I%
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It develops that the continuous process

(4.16)' 1 - A

z

is indistinguishable from C; furthermore, from Lemma 4.3 and the uniqueness of

the Doob-Meyer decomposition, we have for every t e [0,T]

(4.19) A t = A , a.s. P
t t T

It is also pretty obvious from (4.12) and the continuity of both and Q,

that

(4.20) Ct Q t' 0< t < T

(4.21) T QT

hold a.s. PT '

Proof of Theorem 4.2: The process

Al
(4.22) Vt - - fBgds),F ; 0 < t-T

t t 0

is obviously adapted, continuous and of class D[0,T] (Lemma 4.4), and satis-

fies (4.8), (3.5), (3.6) thanks to (4.12), (4.20), (4.21); besides, the stopping

times tt of (3.8), (4.13) are a.s. equal.

On the other hand, a straightforward application of It's rule to (4.16)'

yields, in conjunction with (4.17) and (2.11),

d ( )

(4.23) d;t = Z Nal t + j N (t)dB - dAt

and then we obtain from (4.22):

t d t X (0 )

(4.24) VV 0 +f(r V -g)ds ± f s ((s) +N (s))dB (j ) fX( 0t-<T
0J1 0 s 210 s2

almost surely. But now, comparing (4.1) and (4.24), we conclude that (3.7)

will be satisfied with the choice

. .. .. .- .-- "..-.
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(4.25) A X x(O)dA ; 5 t-TO
t f s s

0

provided that we select the portfolio R in such a manner that

tzt n 1T(t)x) ij (t) p(t) + Nt6 (t); O t5T, 1-<j-<d.

This can be accomplished (thanks to (2.8)) by introducing the Rn- valued pro-

cess (0)

(4.26) n(t) -t(t)H (t) [ + N 8(t)],F ; 0<t<T
- z -- . ( t tt

and then setting

(4.27) 7 (t) ni (t) is n,

t

It is easily seen from (4.26), (4.18) that this R satisfies the integrability

condition (3.3). The continuous, nondecreasing process A of (4.25) obeys the

condition (3.9) because of (4.19), and the proof is complete.

4.5 Remark: Theorem 4.2 was established in [i] under a regularity condition

on the process F and under the assumption that both processes FG of Definition

3.1 are uniformly bounded. This condition is not satisfied, however, in the

prototypical case of an American option (Example 3.3).

Let us examine now some elementary consequences of Theorem 4.2.

4.6 Remark: Consider the case where the process {QtOFt; _t<T} of (3.10) is

a submartingale under P (or equivalently, the process {Q Z ,Ft; 0< t<T} is a
T t t t

submartingale under P). Then it is easily seen from (4.12) and the optional

sampling theorem that

t -T(QTIFt), a.s. P and u(t) - R (Qt TTtT T T

hold for every 0tT, i.e., ? -T is optimal in (4.10). It develops thatt

*

-* .. pe "€ ' - ' ,., '.- €-' - .. ; -'- .. . . "-'? .- ,: , .°-. ..i -. . ...- - . - . ."- -i_ ... i- i". .
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the valuation problem is the same, in this case, as that for a European con-
p

tingent claim:
T T s

(4.28) Vt = T[fTexp{-frsds} + fgsexp{-frududsIF t ' a.s. P
t t t > t O,

For instance, in the case of Example 3.3 with rt 0, P(t) £0 and c >0,

1
the process

t tt t

is easily seen to be a submartingale under PT; cf. Remark 2.2. We recover a

result of Merton (1973) in the following form: an American option with posi-

tive exercise price, written on a stock which pays no dividends, should not

be exercised before the expiration date.

4.7 Remark: If the process {Q ,F; 0< t<T} is a supermartingale under T'

then 4=Q, u(t) =t (Q ) t and (4.22), (3.10) give
T t'

(4.29) V = f.
.10

Consider in this vein the situation in Example 3.3 with c= 0, j.(t)>-0.
#(1)

Then Q= i) is a supermartingale under P and (4.29) gives V = X In

other words, an American option with zero exercise price must sell for the

same amount as the stock.

Finally, in the case of Example 3.3 with i(t) - 0, we have from Remark
1

2.2 and (4.8):
(1) .(I) < ()

;i 8t~~Vt = sesssup T~ (X(  -T c)+ IFt] <- esessup T[ I XI F] " t~

t t TrES~ T U~ T iT t t ttIT tT,

a.s. P i.e., VS- X ( 1 : the underlying stock is always at least as valuable

as the option.

4

4%
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5. Perpetual claims

When it comes to studying perpetual ACC's (Remark 3.2) it becomes essen-

tial that the Brownian motion B of (2.13) be defined on the entire of [0,)

and be accompanied by a filtration which satisfies the usual conditions. As

such a filtration one could take the P-augmentation of

F BS(B ; 0-Ss<-t); 0<t< ,.t s

but this filtration will typically fail to measure the processes of (2.6).

On the other hand, we may choose the filtration { ) of (2.18) for this pur-

pose. Indeed, we shall take in this section (I ), {Ft
as our basic probability space, and recall (2.19) as well as Remark 2.3.

• S*
Similarly, the classes S 'S t introduced in section 3 will now consist ofU.V t t

stopping times of {t }. It will also be assumed that

(5.1) £(sup Q t)  < o
0<t<o

holds, a condition which guarantees that the process Q of (3.10) is of class

D under P.

5.1 Definition: A vector E= {( 0(t) 'T (t),..., (t)), F ; 0:t< -} of measura-o•'1 n t

ble and adapted processes on ( ,Fo) with

T 2
(5.2) P[f r.(t)dt <] i; 0<T<co, i=0,1, n

4 0

.5 will be called a portfolio, and the process V=V ,F ; 05t <-} of (3.4) the

*value of the portfolio.

5.2 Definition: A portfolio 7 is called a hedging portfolio against the per-

petual ACC if its value V is continuous and satisfies (3.5), (3.7), (3.9) as

well as

(5.3) 1m StV = , 1i 6f a.s.
t t t t'

" '%'o'-x' ; ..- .." .. .. . ..' "* " * . . . . . * *. . . . . . ... . . . " " ". . . . . . . .

,." . ."• ".-. ,,, . .. .'. ,'''.''..', ' .... ... . .', .. ".a.'.',.', ,',.. . ..... "., .',," . S .'.
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and the discounted value BV { 9 F " 0 < t < oo} is of class D. If such a port-
t t t

folio exists, its value is called a valuation process for the perpetual ACC,

and V0 is referred to as a value of the perpetual ACC at t = 0.

The condition (5.3) is, in a sense, an analogue of (3.6). For a generic

nonnegative process Y -{Y t, t; 0< - we shall use the conventionsnonnegat it trcs

*Y Mw lim Y (W)tO t

and , =t[YT 1{< + YIl;T,)} . Proceeding as in section 4 (with T= in

(4.2)) we can establish the following analogue of Theorem 4.2.

5.3 Theorem: Under the assumptions (2.6)-(2.8) and (5.1), there exists

a valuation process V for the perpetual ACC, which admits the representation

-t T s

(5.4) V = esssup t[f exp -fr ds} + tug--exp{- }dsPt] , a.s.
t ES tS t S t t
t

for every fixed tc [0,-). Every other valuation process is indistinguishable

from V, and
- T S

(5.5) V0 - sU t[f exp {-fr sd} + g sexp{-fr ud}ds].

0E 0 0 0

The detailed development is omitted; as before, it uses the results of

[5],[2] for the optimal stopping problem
A

(5.6) u(t) = sup (QT) - sup t (Q ).

t t

The Snell envelope for this problem, i.e., the minimal right-continuous super-

martingale t= { t t ; 0<_ t <co} which dominates Q, satisfies

(5.7) = esssup t(Q IF = esssup t(QIF ), a.s.
t ES T t TS t

t t

for every 05t<c, and is now regular (i.e., (4.15) holds on every finite

_ .€. e #" ' .' " "€ . , .. - -. ., . .. - - ... -. , ., .- ...-.... .-... ... .-. .' . ."*-*... .-. .- .- .-....
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A horizon [O,T]) and of class D under P. For the last claim, it is useful to

recall the strengthening of (5.7):

, (5.8) esssup IF a.s.
TESI.

(e.g. [4], §2.15), which is valid for every OE S and with S denoting the

class of all {F I-stopping times that satisfy P[- : T <oo i. The stopping

," time

tune"#-a = (~inf{s> t; s =Q] ) S

(5.9) =t {c, if {. .. } S

is optimal for the problem (5.6): u(t) = t(Q ), and we have

(5.10) =  Q ' a.s. P.

On the other hand, the continuous, nondecreasing process A= {At,F • 0S t'C C}

in the Doob-Meyer decomposition (4.16) is integrable, and the right-continuous

martingale M= {Mt Ft; 0 - t < -) is uniformly integrable and admits the (Fujisaki-

Kallianpur-Kunita) representation
d t

(5.11) M = t(M0) + ? ji¢(s)dB( 0- t < °

as an almost surely continuous process. Here (t),Ft, t<c} are measurable,
J "m

adapted processes with

T
(5.12) P[f¢ (t)dt < -]  1 ; 0-<T < °  -j-d;

see, for instance, [18], Theorem 5.20. Finally, the process

% t% (5o 13 V t (t f 6s gmsd s ) F t ;t 0 <! t <°".(5.13) vt  l -r _d ) <

t 0

is easily seen to satisfy the tenets of Definition 5.2; it is the value of the

portfolio 7, determined by (4.27), where now

(5.14) (t) W (t)H (t) (t) ,F ; 0 t < o*
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It is easily seen (using (5.12)) that this portfolio satisfies the requir(Ment

(5.2) and that the optimal stopping time c for (5.6) coincides with oft t

(3.8).

5.4 The Markovian case: If the processes in (2.6) are equal to the constants

...,r,a., . respectively, then the stock price process

= (x(I) x(n)) *

, (, X

satisfies the system (z.3) of linear equations with constant coefficients. If

furthermore, the processes F and G of Definition 3.1 are given as

f t =  ( t) = 0 ; 0 -t <f = T(X ),g E;0tc
t -t t

for some continuous function : ]Rn [0,9-), then under the conditions of Theorem4-

4.2 the valuation process is obtained via

(5.15) V = v(X ); 0 st<-, a.s.

n

where v : IR - [0,o-) is the least r-excessive majorant of ¢ (see [6]).

5.5 Remark: In the case of Example 3.3 with (t) -c7 > 0, i(t) - . > 0,

we have

(I) + <  X (1)
t t t

where the last process satisfies (2.17). It follows easily from this equation

that
aY

t0 <-Qxe 0!5t <-0Qt

(1)holds a.s. ) where Y =B -Nt is Brownian motion with negative drift and
t t

=- + . But now the law

2-]

sup Y cdb] = 2e -2vbdb; b> 0OttO<t<o

is well-known, and the condition (5.1) follows from it; consequently, Theo-

rem 5.3 applies to such perpetual American options.

,. ,....., ,. ,.,....,.-, ,. ... ........................................................... ,.....................,...'.,..,...... ,-'.'.,/,..:.',.',
'a.. -- iaIP ....-
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For an American option as above but with ,(t)E 0 (i.e., on a stock which

pays no dividends) and with

* T

(5.16) rt 0, > n lim = sd ; a.s.
T-

we shall agree that the valuation process is given by

(5.1 7) V = lir V (ij), 0_< t <
t t

* where V(u) is the valuation process under a constant divident rate, provided

that the limit in (5.17) exists almost surely. From the optional sampling

theorem we obtain

) - esssup X Vt('0t t t t*

esssup E[(X( ) - c) + , F

TCS*
t

> [X(1) -c+Tlt

T T t

> X( 1 ) e - ' ( T - t ) - F
- t t ec [E T t

- for every o" , T>t. Letting * 0 and then T-co we obtain V =X (l) rom' ' t t

(5.17). In words, a perpetual American option on a stock which pays no divi-

dends, and in the presence of condition (5.16), must seli for the same amount

as the stock.

Ii

. .. .. . . . . .. . . . . . . .
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If the perpetual option has zero exercise price, the same conclusion

holds without the restriction lj(t)RO (by analogy with Remark 4.7).
1

5. 6 Example: In the Markovian case 5.4 with d -n=-1, c=l, 0)(x)= (x-l1)

the function v in (5.15) was computed by McKean [11] as

1)x 0

V(XXK

with y VT=2r as (v~~ c = r - > 0, a - K=- -- > 1, and the optimal

execis tie (.9)becmesP Winfis! t; X 2 K6E S . The finite-horizont 5 t

version of this problem was studied by Van Moerbeke [17), along with the

associated free boundary problem.
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